US 6,405,361 B1

9

by means of further transformation steps. These transforma-
tion steps may start from an automaton as shown in FIG. 10.
As a possible optimization, state transitions according to the
schema shown in FIG. 114 are identified and are replaced by
transitions according to FIG. 115. More in detail, states T of
the automaton are identified whose incoming edges, coming,
for example, from a state S, are labeled at most with
messages of the form (?, A). Furthermore, exactly N (for
N>0) transitions (!,B;) with target state U, (for 1=i=N) are
assumed to have their origin in state T. In this situation, state
T may be removed by replacing each transition (!, B,)
originating in T and having a target state Us by a transition
from S to U,, said transition being labeled by (?, A)A!,B,).

The automata generated by the methods described above
can further be simplified in variant embodiments if the state
space comprises a control state and a data state and if
extended state machines with guarded state transitions and
actions for changing the data state are used. Then, the
conditions for the sequence descriptions are pairs of a
control state and a data state each. Suitable concepts for such
extended state machines are known per se, for example from
the Statecharts and ROOM formalisms.

In the sample embodiments described above, the
sequence descriptions only consisted of communication
actions and conditions. In alternative embodiments,
however, the method is extended to more powerful formal-
isms for the description of execution sequences and inter-
actions. For example, sequence descriptions containing
choice and repetition operators may be transformed by
schematic transformations into the simpler sequence
descriptions for which the method has been described above.

According to the sample embodiments described above,
when normalizing a component sequence description in
sub-steps 26 and 28 (FIG. 4), missing initial and final
conditions have each been replaced by the initial states of the
respective components as given in the specification 10 (data
18). In variant embodiments, each such component sequence
description is replaced by a set of sequence descriptions, in
each of which an arbitrary condition occurring in the com-
ponent has been inserted in the place of the missing condi-
tion.

It can thus be seen that the invention can be used for
creating computer-executable programs in a fully or at least
partially automated way. The particulars in the above
description of sample embodiments should not be construed
as limitations of the scope of the invention, but rather as
exemplifications of preferred embodiments thereof. Many
other variations are possible and will be readily apparent to
persons skilled in the art. Accordingly, the scope of the
invention should be determined not by the embodiments
illustrated, but by the appended claims and their legal
equivalents.

We claim:

1. A method for automatically generating a state-based
program for a component of a system consisting of a
plurality of components communicating with each other,
wherein said program is generated from a specification of
said system, said specification comprising interaction-based
sequence descriptions of said system, said method compris-
ing the steps of:

a) determining all sequence descriptions of said compo-

nent defined by said specification of said system,

b) normalizing said sequence descriptions of said com-
ponent such that a normalized sequence description
comprises exactly one initial condition and exactly one
final condition and, between said initial condition and
said final condition, communication actions only,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

¢) determining a state-based specification of said compo-
nent by identifying all equal initial and final conditions
of said normalized sequence descriptions of said com-
ponent with a single state, and

d) determining said state-based program for said

component, wherein each sequence description con-
tained in said state-based specification of said compo-
nent is replaced by a sequence of said communication
actions of this sequence description, separated by addi-
tionally inserted states.

2. The method of claim 1, wherein in step a) each
sequence description of said system concerning said com-
ponent is limited to a corresponding sequence description of
said component.

3. The method of claim 1, wherein step b) comprises the
following sub-steps:

b1) inserting a condition prescribed in said specification

of said system as an initial condition into each of those
sequence descriptions of said component that begin
with a communication action,
b2) inserting a condition prescribed in said specification
of said system as a final condition into each of those
sequence descriptions of said component that end with
a communication action, and

b3) splitting all sequence descriptions of said component
having more than two conditions into a plurality of
sequence descriptions of said component, each of the
split sequence descriptions having exactly two condi-
tions.

4. The method of claim 3, wherein at least one of
sub-steps bl) and b2) is/are repeated for each of a plurality
of conditions to be inserted in order to obtain a correspond-
ing number of sequence descriptions of said component.

5. The method of claim 1, wherein said interaction-based
sequence descriptions of said system are represented by at
least one of Message Sequence Charts and UML sequence
diagrams.

6. The method of claim 1, wherein said state-based
program for said component is represented by an automaton.

7. The method of claim 6, wherein said automaton is one
of an SDL automaton and a Statechart automaton and a
ROOM automaton.

8. The method of claim 1, wherein said state-based
program is based on an extended state automaton whose
state space comprises a control state and a data state, and
wherein state transitions are performed depending on the
current data state and are adapted to change this data state.

9. The method of claim 1, wherein step d) comprises the
step of removing e-transitions from said state-based pro-
gram.

10. The method of claim 1, wherein a deterministic
state-based program is generated in step d).

11. The method of claim 1, further including a step of
optimizing said state-based program generated in step d).

12. The method of claim 11, wherein the optimization is
performed with respect to the number of states.

13. The method of claim 1, wherein non-local conditions
in said sequence descriptions of said system are replaced in
step a) by local conditions in accordance with a predeter-
mined surjective mapping.

14. The method of claim 1, wherein the method is used for
at least one of generating a state-based program for a
telecommunication application and generating a state-based
program for providing an error tolerant communication of
data and generating a state-based program for providing an
error tolerant communication of messages and generating a
state-based program for a reactive system and generating a



